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Abstract

This paper is concerned with obtaining boundary integral equations for the numerical solution of the partial dif-
ferential equations governing static deformations of inhomogeneous anisotropic elastic materials. The elastic param-
eters for the inhomogeneous materials are assumed to vary continuously with the spatial variables. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The study of boundary value problems for inhomogeneous materials has received considerable at-
tention in recent years. This interest is partly related to the extensive use of composite materials in various
engineering applications. In this connection many of the studies have been concerned with materials
which are made up of two or more homogeneous parts and many problems have now been solved for
materials of this type (see e.g. Clements, 1971; England, 1965). In comparison problems for materials in
which the elastic parameters vary continuously with the spatial coordinates have received less attention.
To some extent this is due to the inherent difficulties in solving boundary value problems for materials of
this type. However in recent years some progress has been made with the analytical solution of particular
problems for a restricted class of inhomogeneous materials (see e.g. Ang and Clements, 1987; Dhaliwal
and Singh, 1978; Erdogan and Ozturk, 1992; Gibson, 1967; Gibson et al., 1971; Varley and Seymour,
1988).

The current study is concerned with the solution of boundary value problems for static deformations of
inhomogeneous elastic materials. The elastic moduli vary continuously with the three Cartesian coordi-
nates. A boundary integral formulation is used to obtain a solution to the governing differential equations
and this is then applied to some particular boundary value problems.
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2. Statement of the problem and basic equations

Referred to a Cartesian frame Oxx,x3 consider an inhomogeneous anisotropic elastic material occu-
pying a region Q in R® with boundary 0Q which consists of a finite number of piecewise smooth closed
surfaces. The equilibrium equations governing small deformations of this material may be written in the
form

0 auk (X)
i [Ciﬂcl(x) o | 0, (2.1)
J

where 7, ,k, 1 = 1,2,3, x = (x1,x2,x3), u; denotes the displacement, c;;(x) the elastic parameters and the
repeated summation convention (summing from 1 to 3) is used for repeated Latin suffices. The stress
displacement relations are given by

auk
H(X) = cipg —r 2.2
O-lj(x) Cijki axl ( )
and the traction vector P, on the boundary 0 is defined as

6uk
Fi(x) = oyn; = cyu > njs (2.3)
where n = (ny, ny, n3) denotes the outward pointing normal to the boundary 0Q.
For all points in © the coefficients ¢;,(x) are required to satisfy the usual symmetry condition

Cijki = Cijik = Cjiki = Cklij (2-4)

and also sufficient conditions for the strain energy density to be positive. This requirement ensures that the
system of partial differential equations is elliptic throughout Q.

On the boundary 0 the displacement u; is specified on 00, and the traction P, is specified on 02, where
0Q = 0Q, U 0Q,. A solution to Eq. (2.1) is sought which is valid in  and satisfies the specified displacement
on 0€; and traction on 0€,.

3. Reduction to a linear constant coefficients equation

The coefficients in Eq. (2.1) are required to take the form

0
c(X) = el g(x), (3.1)
where the cl(.;),(), are constants. Also in addition to the symmetry condition (2.4) the cf](.),f, are required to satisfy
the additional condition
0 0
Cl<'jk)l = Cz<'1k)j' (3.2)
Eq. (2.1) may now be written in the form
0 Ou
O Y [ M) 3.3
B2 (%) o

Consider the transformation

we =g "y, (3.4)
Use of Eq. (3.4) in Eq. (3.3) provides the equation
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1/20(9) azwk 0 ag1/2 %_C@) agl/Z %_ c(Q) azgl/z _ (3.5)
ikt 0x;0x; ikt Ox; Ox UK 3x, Ox; kil Ox;0x; ’
where by virtue of Eq. (3.2) this equation reduces to
azlp 62 1/2
172 ,(0) ko 0 98 _ 3.6
g ijkl axjaxl kcl/k[ @x]@x; . ( . )
Thus if
2
0 SV 3.7
ijkl ijax, ( . )
and
Poll2
© T8 _ 38
ijkl axjax[ ’ ( . )

then Eq. (3.6) will be satisfied. Thus when g satisfies system (3.8) the transformation given by Eq. (3.4)
transforms the linear system with variable coefficients (3.3) to the linear system with constant coefficients
(3.7).

As a result of the symmetry property ¢, = cui; Eq. (3.8) consists of a system of six constant coefficients
partial differential equations in the one dependent variable g'/?. In general this system will be satisfied by a
linear function of the three independent variables x;,x,,x;. Thus g(x) may be taken in the form

g(x) = (o) + fxs + px3 + 6)°, (3.9)

where o, , y and 0 are constants which may be used to fit the elastic parameters ¢;; (X) = cg.)k)l g(x) to given
numerical data.
Now substitution of Egs. (3.1) and (3.4) into Eq. (2.3) yields

Pi — _PI%’] l//k +P,'[Mg1/2, (310)
where
ag1/2
0
P (X) = el = (3.11)
oy

A boundary integral equation for the solution of Eq. (3.7) with i, given on 0€, and P,M given on 02,
may be written in the form (Clements, 1981)

1 0) = = | [0 @i x30) = 1,0) P, 30| (), (3.13)

for m =1,2,3, where xo = (a,b,c) is the source point, 1 =0if xo € Q, n=1if xp € Qand n=1/2
if xo € 0Q and 0Q has a continuously turning tangent at xo. The @;, in Eq. (3.13) is any solution of the
equation

©0) 2P (X, X)
Cikl ™ A. AL

= S0 (X — Xo) (3.14)

Ox;0x;

and the I';, is given by
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0,
I, =c9 ="fm,.
ijkl axl J

For plane problems with xo = (a,b), x = (x1,x;), @, and I';, are given by (see e.g. Clements and Jones,
1981)

(3.15)

1 2
¢iIW(X7X0) = %9{ ZAiachk IOg(Zoc - Coc)] dkm7 (316)
=1
1 2 1
F,'m(X,X()) = %‘R lzL[ijzk(Zz — C\x)7 ‘|njdkm7 (317)
o=1

where the indices now take the values 1 and 2, R denotes the real part of a complex number, z, = x; + 7,x,
and ¢, = a + 1,b, where 1, are the two roots with positive imaginary part of the quartic in 7

0 0 0 0
|C§1121 + ngzlf + ‘3511127 + 65222T2| =0. (3.18)

The A;, occurring in Eq. (3.16) are the solutions of the system

(‘75?121 + Cgiﬂa + 05?122% + Cz(‘glzzngka =0. (3.19)
Also the Ny, L, and dy, are defined by
2
51‘/{ = ZAiazNlem (320)
a=1
Ly = (el + il ) s (3.21)
1 &2
6,‘,,1 - — —i Li (xNoc 7Z[ 1Noc dm; 322
21;{ 20 Vak 2 k} o ( )

where the bar denotes the complex conjugate and i denotes the square root of minus one.
For the three dimensional case @,, is given in Vogel and Rizzo (1973) in the form

1
b — P 2
1m(X>XO) 8T[22|X — XO‘ et jl(é) d57 (3 3)

where ds is an element of arc length, and

1 2'imn"m mr ns
py(g) = 2t E10E),

Ou (&) = Cg)k)zfjfh

where &;,, denotes the permutation symbol and det Q is the determinant of Q. The integral in Eq. (3.23) is
taken around a unit circle which has its center at the point Xy and lies in a plane perpendicular to the vector
X — Xp.

Use of Eqgs. (3.4) and (3.10) in Eq. (3.13) yields

18" (Xo) t (X0) = —/

oQ

{P0)1g™ 20 @10 (%, %0)] = () [8"2(%) T (x,%0)
— PE(X) By (X, Xo)] }ds(x). (3.24)

This equation provides a boundary integral equation for determining u, and P, at all points of Q.



M.I. Azis, D.L. Clements | International Journal of Solids and Structures 38 (2001) 5747-5763 5751

4. A perturbation method

The analysis of Section 3 provides a boundary integral equation for the numerical solution of problems
governed by Eq. (2.1) subject to the coefficients c;;, (x) satisfying the conditions (3.1), (3.2) and (3.8). Within
these constraints there is flexibility in the choice of the parameters in Eq. (3.9). Values of these parameters
may be chosen to fit the ¢;,(X) to given numerical data within a restricted domain Q. However despite this
flexibility in the choice of the coefficients the fact remains that the analysis of Section 3 is only applicable for
a somewhat restricted class of inhomogeneous materials.

In this section a boundary element procedure is obtained for a more general class of elastic coefficients
¢ (X). In particular a boundary element procedure is derived for the case when the coefficients ¢;;,(x) are
perturbed about the forms given by Eq. (3.1). Specifically the coefficients c;,(x) are required to take the
form

cu(X) = i g(x) + ecli (x), (4.1)

where € is a small parameter, cf:/.lk), is a differentiable function, cg),g, satisfies Eq. (3.2) and g(x) satisfies Eq.
(3.8).
Substitution of Eq. (4.1) into Eq. (2.1) and use of the transformation Eq. (3.4) gives

0 0 0 )
0) -1/2 _ ( -1/2 4.2
Cijkl By, Ox; [ @x ( lpk)] axj [C”“ ox; ( Vi )] (4.2)
Use of the analysis of Section 3 now permits this equation to be simplified to the form
%y 04 0B oy el
(0) ko _ ~1/2 ijk ilkj k . k
LT A { Vit ( 7 ) ox, P axjax,}’ *3)

where

-1/2
A (x) = ') % nd B, (x) =g 12
ik \X) = Cjjkr ox, ik \X) = Cij& -

A solution to Eq. (4.3) is sought in the form

h®) =S P (x). (4.4)

r=0

Substitution of Eq. (4.4) into Eq. (4.3) and equating coefficients of powers of ¢ yields

62‘//(")
ijlaxjaxl hz ’ orr 07 ’ ) ( 5)
where
1Y (x) =0, (4.6)
’ 0 | (- OB\ oyl 2yb
W (x)= —g'? ”‘wk g < i + a}(i"’) 1%,; — By a;//.kax, , forr=1,2,... 4.7)
J J

The boundary integral equation for Eq. (4.5) is

0 x0) == [ [0 @ 30) = 0 T 50 a5+ [ KO0 @) (), (48)

o
where P,-['/’m] = cl(jok)] (61#,&")/6@) n;forr=0,1,...
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From Egs. (3.4) and (4.4) the displacement u;, may be written in the series form

=3 el (x), (4.9)
=0
where 1" corresponds to y” according to the relationship
Y =g"u forr=0,1,... (4.10)
Also
PV Z g2 P 4y PE for = 0,1, (4.11)
where
P = cﬁ?,ﬁ, (au,(f>/6x/> n;, forr=0,1,... (4.12)
Thus the integral Eq. (4.8) may be written in the form
ng'?(xo)ull) (xo) = — /ag {P,-(r)(x) (8" (x) @ (X, X0)]
! ()& 05) P, %0) — B () D3, x0)] ()
+/Qh§’>(x) ®,,(x, %) dS(x), for r=0,1,... (4.13)

Also, the function 4"’ may be written in the form

: d OBy 0221 0 0g'/27 aul" Y
h5>g‘1/2{{(g1/2/1gk)+”" : }uli U+ {g‘ﬂAw( Y2Biy) + By = — |

0x; Ox;  Ox; Ox 0x; 0x;
QU
B; fi =1,2,... 4.14
+ ( ;kl) o j@xl or r ( )
The corresponding value of P, is given by
Ouy ) (1) Ou ) Ouy 0 Ouy
P = ciju 6_x, nj = [Cijklg + GCW] 6_, nj = C,,kz 6_1 nj+ € 6_1 nj
au - ) S r r
= l/kl A nj + Z lgczjkl + cl(:/'lk)l 6kx1 ‘|nj = gIDI(O) + Z € |:gPl< ) + Gl( ):| ’ (415)
r=1
where
: au(rfl)
G (x) = el ——m, (4.16)

ax;
(0)

To satisfy the boundary conditions in Section 2 it is required that ;' = u; on 0Q; where u; takes on its
specified value on 0€;. Also it is required that on 09, Pl-(o) = g’lP where P takes on its s emﬁed Value on
09Q,. It then follows from Egs. (4.9) and (4.15) that forr=1,2,.. 7= 0on 00, and P "G,-
0Q,.

The integral Eq. (4.13) may be used to ﬁnd the numerical values of the unknown u or P on the
boundary 02 and the numerical values of u ) and its derivatives in the domain Q for r = 0, l, ... The u; and
P, may then be obtained, respectively, from Eqgs. (4.9) and (4.15) and the stresses g;; from Eq. (2.2).



M.I. Azis, D.L. Clements | International Journal of Solids and Structures 38 (2001) 5747-5763 5753

5. Numerical results

To illustrate the application of the integral equations derived in the previous sections some plane strain
boundary value problems for inhomogeneous materials are considered in this section.

The first problem involves the simple extension of a constrained inhomogeneous transversely isotropic
slab. An analytical solution exists for the particular problem considered and this facilitates an assessment of
the accuracy of the boundary element procedure.

The second problem concerns an inhomogeneous material consisting of layers of homogeneous trans-
versely isotropic materials with the elastic constants varying from layer to layer. The particular problem
considered facilitates an assessment of the effectiveness of the boundary element procedure for the solution
of problems involving layered anisotropic materials.

The third problem concerns strip loading of an inhomogeneous isotropic halfspace and an isotropic layer
of constant finite width. Problems of this type are important in geotechnical assessments involving loading
of the earth’s surface in cases where the material immediately below the surface is found to vary with depth
(see e.g. Ward et al., 1968). The examples considered illustrate the suitability of the boundary element
method for the solution of boundary value problem of this type (involving unbounded domains) and also
demonstrate the applicability of the method for solving problems for isotropic materials as a limiting case
of the anisotropic analysis.

Before proceeding to the specific problems it is appropriate at this point to relate the constants ¢;;; and
the matrices A, and L;, of Section 3 to the specific constants relevant for plane strain problems for
transversely isotropic and isotropic materials. For these problems the displacements u; are taken in the
form uy = M](X],Xz), Uy = Ltz(xl,XQ) and Uz = 0.

For transversely isotropic materials with the x;-axis being normal to the transverse plane the non-zero
elastic moduli Cijkl(x) of interest are C1111,C1122, C2022 and C1212- Let

(0) (0) (0) (0)
am=C, cn=F, =4, cy,=1L1L, (5.1)

where 4, C, F and L are constants.
For plane problems for this class of materials Eq. (3.7) becomes

Py, Y, Y,
C L F+L =0 5.2
ae Tlag TN, =0 (5.2)

2R 2B 2
L+F L A =0 5.3
(L+ )6x16xz - ox? - ox3 (53)

and the quartic equation (3.18) may be written

ALt* — (F* +2FL — CA)? + CL=0 (5.4)

so that in this case explicit analytical expressions for the roots may be obtained by treating Eq. (5.4) as a
quadratic in 2.
If 73 and 13 are the roots of Eq. (5.4) then from Eq. (3.19) it follows that the matrix A4y, is given by

AT+ A2 +L
Ay = T (F+L) T (F+L)

and hence from Eq. (3.21) the matrix L;, takes the form

F—A7? F—A7?
. — L( F+Ll) L( F+L“)
20 = F—dA7 F—dA7
—L ( 7 (F+L]) ) -L ( © (F+L2) )
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The matrices Ny, and dy, defined, respectively, by Egs. (3.20) and (3.22) may be readily calculated by
employing the above two matrices.
In the particular case of isotropic materials the constants c1y1;, €222, 1212 and ¢y, are given by

_ 3E
cun =15 +1,
_ 3E
0 = s (5.5)

— _ _E
€212 = €122 = 504y

where E is Young’s modulus, v is Poisson’s ratio and # is a small constant which facilitates the inclusion of
isotropy as a limiting case (as 7 — 0) of the anisotropic analysis.

For general anisotropy (or for transverse isotropy when the axes are not aligned with the symmetry
planes) the roots of the quartic polynomial (3.18) must be obtained numerically and then the homogeneous
linear algebraic system of Eq. (3.19) readily yields the 4,,. The L, are obtained from Eq. (3.21) by directly
substituting the known z, and A4,,.

In implementing the boundary element method (BEM) to solve the subsequent problems the boundary
0Qin Eq. (4.13) is discretised into a number of segments of equal length and the unknowns assumed to be
constant on each segment (Clements and Jones, 1981). Also where domain integrals are required the do-
main Q in Eq. (4.13) is divided into a number of equal squares with the integrands calculated at the
midpoints and assumed to be constant over each of the squares. The number of squares is increased to
ensure the required level of accuracy in the domain integral. In the cases when domain integrals are re-
quired in the following problems it is sufficient to divide the domain into 25 equal squares in order to
achieve convergence to the numerical values given in the relevant tables.

5.1. Extension of a constrained slab

Consider the boundary value problem given in Fig. 1 for a material with elastic coefficients
c;jkl = ciu /<, (5.6)

where ¢ is a reference elastic modulus and

T2
T P/ =0
D(0,1) uy =0 C(1,1)

<

11112221111
)}

S
Il
—«

T

Y

>
—
\.O
(=)
~
s}
—
~
(=)
~

Pl=0
up =0

Fig. 1. Extension of a constrained slab.
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A :6.14(1+x’1)2, c’1122:2.14(1+x’1)2,

oy = 5.96(1+X)°, ¢}y = 1.64(1 +x,)°

with x, = x;/1 (for i = 1,2) where [ is a reference length.
The numerical values 6.14, 2.14, 5.96 and 1.64 in Eq. (5.7) when multiplied by 10" dynes/cm? are the

elastic constants for a particular homogeneous transversely isotropic material (Clements, 1981) and are
chosen here purely for illustrative purposes. The elastic moduli (5.7) take the form (4.1) with

g=(+x)>  €=025

0 =6.14, ) =1.89,
) = 5.96, W =1.89,
it =0, i = (1+x;)%,
hom =0, iy = (1 +)’

where c:%) = cl(/",g /¢ for m =0, 1. Referred to Fig. 1 the boundary conditions are

P =0, u,=0, on AB,
P=1 P =0, on BC,
P =0, u,=0, on CD,
u; =0, uy,=0, on AD,

where v} = u;/u, P/ = P,/ P with @ a reference displacement and P = ¢/1 is a reference traction.
This problem admits the analytical solution

0
wy = x/leth (L +x)), wy =0
with the stress given by
_ _ _ .0 (0)
=1, a,=0, ay=cim/cim

where o, = a;/P.

Tables 1 and 2 provide the analytical and BEM results for the non-zero displacement and stresses for
some sample points in the domain Q for the cases when the boundary 0f2 is divided into 80, 160 and 320
segments for the displacement and 160 and 320 segments for the stresses.

The results indicate the convergence of the numerical solution to the exact values obtained from the
analytical solution as the number of boundary segments increases.

5.2. Deformation of a layered anisotropic elastic slab

The analysis of Sections 2-4 was obtained under the assumption that the elastic coefficients c¢;y;(x)
satisfy sufficient differentiability conditions in Q2. However, in applications, the methods derived may be

Table 1

Displacements for the constrained slab
Position 80 segments 160 segments 320 segments Analytical
(¥, x) Uy U Uy U
(0.1,0.5) 0.0142 0.0145 0.0147 0.0148
(0.3,0.5) 0.0368 0.0372 0.0374 0.0376
(0.5,0.5) 0.0534 0.0538 0.0540 0.0543
(0.7,0.5) 0.0661 0.0666 0.0668 0.0671

(0.9,0.5) 0.0762 0.0766 0.0769 0.0771
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Table 2

Stresses for the constrained slab
Position 160 segments 320 segments Analytical
(x},%3) 0’y T ) Ty ) 0
(0.1,0.5) 0.9973 0.3484 0.9979 0.3484 1.0000 0.3485
(0.3,0.5) 0.9969 0.3499 0.9980 0.3490 1.0000 0.3485
(0.5,0.5) 0.9974 0.3502 0.9982 0.3491 1.0000 0.3485
(0.7,0.5) 0.9981 0.3497 0.9986 0.3488 1.0000 0.3485
(0.9,0.5) 0.9992 0.3488 0.9992 0.3482 1.0000 0.3485

used for both the case when the coefficients satisfy these conditions and also as approximate methods for
the solution of problems for a wide class of materials consisting of discrete layers of homogeneous an-
isotropic materials. For layered materials in which the material parameters do not vary too greatly from
layer to layer, the approximate solution obtained using this method may be used to obtain accurate nu-
merical values for the displacement and stress fields.

To illustrate the application of the integral equations of the previous section to problems involving
layered media consider the problem of the compression of a layered slab in frictionless contact with a rigid
base along one side (see Fig. 2).

The material consists of 10 homogeneous anisotropic layers which lie in the intervals

0.1n<x;<01(n+1) forn=0,1,2,...,9.
The constant elastic moduli in each of these layers are given by

chy = 6.14]1 + €sin(0.1nm)],
Chip = 1.64[1 + esin(0.1nm

1+ a0 )]
o = 5.96(1 + esin(0.1nm)], (5-8)

chappy = 1.64[1 + €sin(0.1nm)],
forn=0,1,2,...,9 with € a small parameter. The boundary conditions for this problem are (see Fig. 2)

P Twl
W B(,0)

E(,a) F(1,0)

c(, 1

~—

Z2

IR zzaeey

Fig. 2. Deformation of a layered slab.
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u =0, P, =0, on DA,

P =0, P, =0, on AB, CD, CE and FB,

P=-P, P,=0, onEF.
Case (i) Loading along the whole side BC (a =1, b =0): For the case when a =/ and b = 0 so that the
loaded region on x; = / extends along the whole side BC it is possible to obtain an analytical solution to this

problem by taking displacements in each homogeneous layer in the form

o /
Uy = a,xy + by,

5.9

uy = ¢, Xy +d,, (59)

for 0.1n<x{ <0.1(n+1) and n=0,1,2,...,9 where a,,b,,c,,d, are constants. Imposing continuity con-
ditions on the displacements and tractions at each of interfaces x| = 0.1,0.2,...,0.9 together with the

boundary conditions at the boundaries AB, BC, CD, and DA leads to 40 linear algebraic equations which
may be solved for the 40 unknowns ay, by, co, dy, ai, b1, c1,dy, ..., a9,by,co,dy. Eq. (5.9) then provides the
displacement at all points of the layered slab.

In order to use the BEM of Section 4 to obtain an approximate solution to this problem the discrete
elastic moduli given by Eq. (5.8) are approximated by the continuous moduli

iy = 6.14[1 + esin(mx) )],
i1 = 1.64[1 4 esin(mx} )],
Chopy = 5.96[1 + esin(mx} )],
sy, = 1.64[1 + esin(mx})].

These elastic moduli take form (4.1) with

g=1

0 =6.14, V) = 1.64,

) = 5.96, W = 1.64,

U =6.14sin(ny), (), = 1.64sin(nx)),
), =596sin(ny), ¢y, = 1.64sin(nx}).

Results for some selected points in the slab and selected values of e are given in Tables 3 and 4. The BEM
results in Tables 3 and 4 were obtained using 320 boundary segments. The difference between the values
obtained using the BEM and the analytical solution decreases as the value of the parameter ¢ decreases.
This is to be expected at least for two reasons; namely that the perturbation method in Section 4 will
generally give a more accurate approximation as the parameter € decreases, and secondly the variation in
the values of the elastic moduli from layer to layer will decrease as e¢ becomes smaller so that the

Table 3
Displacement u} for the layered slab
Position e=0.1 e=02 e=0.3
(), x5) BEM Analytical BEM Analytical BEM Analytical

( ) —0.0421 —0.0429 —0.0405 —0.0419 —0.0388 —0.0411
(0.45,0.5) —0.0741 —0.0755 —0.0694 —0.0723 —0.0646 —0.0695
( ) —0.1059 —0.1075 —0.0976 —-0.1017 —0.0894 —0.0967
( ) —0.1386 —0.1401 —0.1278 —0.1321 —0.1171 —0.1252
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Table 4

Stresses ¢/, for the layered slab
Position e=0.1 e=0.2 e=03
(], x5) BEM Analytical BEM Analytical BEM Analytical
(0.25,0.5) —0.9948 —1.0000 —0.9790 —1.0000 —0.9530 —1.0000
(0.45,0.5) —0.9885 —1.0000 —0.9559 —1.0000 —0.9031 —1.0000
(0.65,0.5) —0.9911 —1.0000 —0.9639 —1.0000 —0.9205 —1.0000
(0.85,0.5) —0.9986 —1.0000 —0.9914 —1.0000 —0.9799 —1.0000

approximation of the discrete material by an inhomogeneous material with continuous moduli will involve
a smaller error.

Case (ii) Loading along part of side BC (a < I and/or b > 0): For this case there is no simple analytical
solution to the boundary value problem. The BEM may be used to obtain an approximate numerical
solution and some results for the displacement u;(/,x,) on the upper side of the slab are given in Fig. 3 for
e = 0.1 and various loaded regions EF. As expected the normal displacement on BC decreases as the loaded
region decreases and the extent to which this occurs is quantified in Fig. 3.

5.3. Strip loading of a half-space and a finite layer

In this section the analysis of the previous sections is used to consider strip loading of an isotropic
inhomogeneous half-space (Fig. 4) and a layer of constant finite width (Fig. 5). Problems of this type have
been considered by Gibson (1967) who considered an incompressible (Poisson’s ratio 1/2) isotropic half-
space with a shear modulus which varies linearly with depth and hence referred to the geometry in Fig. 4
assumes the form

w(x2) = p(0) + mx, (5.10)

for some constant m. Subsequently Gibson et al. (1971) considered a similar strip loading problem for the
same class of materials with the half-space replaced by a finite layer. Gibson et al. (1971) observed that in a
geotechnical assessment of a possible site for a large proton accelerator Ward et al. (1968) had found that
the elastic properties of the site varied with depth. In their paper Ward et al. (1968) indicated that their
analysis could be advantageously refined by an analysis in which the varying stiffness with depth was taken

-0.02

-0.04

-0.06

., 008
u (I, 25)

-0.12

-0.14

-0.16 =
-0.18 1 L 1 1 1 L 1 1 1
0

Fig. 3. Surface displacement for the layered slab.
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o i

Fig. 4. Strip loading of a half-space.

T
12 | 12

Fig. 5. Strip loading of a layer on a rough rigid base.

into account. Gibson et al. (1971) provide a possible means for such an analysis in the case when the
material is incompressible with shear modulus of the linear form (5.10).

The analysis provided in this paper provides a possible means of investigating this type of problem for
another class of isotropic inhomogeneous materials which may be closely associated with the numerical
data given by Ward et al. (1968). In particular, the surface displacement due to strip loading of a half-space
and finite layer is considered for the case when Poisson’s ratio is 0.25 and the stiffness is given by

E = Eo(1 + ax,)?,
where E, and o are constants. If x, is measured in metres then for the particular values of Ey = 2800 kgcm 2
and o = 0.12 m™"' this form for the stiffness £ may be used to closely approximate numerical values given by
Ward et al. (1968). From Eq. (5.5) the relevant non-zero constants ¢, are taken in the form
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C/““ = cllll/EO = (ﬁ + /77\)(1 + oc/x’z)2,
2
Chom = o /[Eg = ﬁ(l + o/x})”, (5.11)
oy = ci2/Eo = g(%ﬂ)(l + “,x/z)za
Clin = enn/Ey = 5t (1 + o),
where o' = al, x, = x,/1 are non-dimensional quantities and 7 is a non-dimensional small constant included
so as to provide the isotropic limit (as 7 — 0) of the anisotropic analysis. For the practical purposes of the
numerical calculations reported in this section for isotropic materials 7 = 0.0001.
The analysis of Section 3 may be employed where the coefficients are taken in the form (3.1) with

2 1(0) ~
g=(1+dx), Ciin = 2(11‘,‘) +n,
10) _ M0 0
Cay = 2(13+v)v Cioi2 = Comp = z<1l+v)~

For the half-space numerical values of the surface displacement #, = u,/I on x, = 0 are given in Fig. 6
for o/ =0.12, o/ =0.24 and o/ = 0.36. The graph clearly indicates the reduction in the magnitude of the
surface displacement u} as the stiffness £ = Eo(1 + o«/x})” increases with o

To obtain these results the integral in Eq. (3.24) was taken along the line x, = 0. For the practical
purposes of obtaining numerical values the traction vector components were specified as P, = 0,P,/P = 1
on the contact region |x|| < 0.5 and the interval divided into S; segments of equal length. In the two in-
tervals defined by 0.5 < |x|| < k the traction-free condition P, = 0, P, = 0 was applied and each of the two
intervals divided into S, segments of equal length. In the two intervals k£ < |x}| < k + 5.5 the displacement
components u; and u, were both taken to be zero and each of the two intervals divided into S; segments of
equal length. The number of segments S; + 25, + 2S5 and the value of k were then increased until the
numerical values converged and the displacement as |x|| — k was zero to three decimal places. To satisfy
these requirements for the numerical examples considered in this paper it was sufficient to take S; = 40,
S, =244, S; =22 and k = 16.5.

To obtain some indication of the validity and accuracy of the results obtained using this method the
values of the displacement were calculated for the homogeneous case o = 0. In this case an analytical
solution exists for the problem under consideration in the form (Clements, 1981)

2
Uy = Z [AkmMochj(za) _AkaMQjX/(Za)]a (512)
a=1
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Fig. 6. Surface displacement for the half-space.
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with

21(z.) =0

~

12(22) = (e~ 1/2) og(z — 1/2) = (2 -+ 1/2) gz, + 1/2)}

where the bar denotes the complex conjugate, z, = x; + 7,x; and the matrix M,; is the inverse of the matrix
L, so that

D LMy = 5.
o=1

The magnitude of the displacement given by Eq. (5.12) tends to infinity as |z,| — oo. This is a well-
known feature of solutions to half-space problems of this type and as a result of this difficulty such so-
lutions can only be considered to give useful information on the displacement near to the contact region
(Love, 1927). In order to use Eq. (5.12) to obtain meaningful data for the surface displacement for the
specific problem considered here it is convenient to follow the procedure adopted by Poulos and Davis
(1974) and consider the displacement of one point relative to another point with both points being in the
vicinity of the contact region. Taking one point to be the normal surface displacement at the origin u,(0, 0),
the difference in displacement u4(0,0) — u5(x;,0), calculated from Eq. (5.12), is given in Table 5 together
with numerical values of the same difference in displacement calculated using the BEM of Section 3 with the
boundary and boundary conditions as described above. As can be seen from Table 5 the difference in
displacements obtained from the analytical and boundary element solutions are in close agreement for the
indicated points.

For o # 0 no simple analytical solution is available for the half-space problem. The normal displacement
uh(x7,0) is given graphically in Fig. 6 for the cases o/ =0.12, «' =0.24 and o = 0.36. As expected the
displacement decreases as the rigidity increases with increasing o’ and the extent of this decrease is shown in
Fig. 6.

For the strip loading of a layer of finite width on a rough rigid base the normal surface displacement
u,(x],0) is given in Figs. 7 and 8 for three values of o and two layer widths # = 2/ and & = 5/. Again as
expected the magnitude of the displacement decreases as o increases and the extent to which this occurs is
quantified in the figures for the values of o indicated.

To obtain the numerical results for the strip the integral in Eq. (3.24) was taken along the boundary of
the rectangle |x}| <k, |x5| < 4. The side on x, = 0 was divided into S equal segments over the contact region
|x{| < 0.5 and S, equal segments on each of the two intervals specified by 0.5 < |x|| < k. Also the side on
x, = h was divided into S5 equal segments and the two sides x] = £k divided into S, equal segments. The
number of segments Sy + 25, + 53 + 54 and the value k& were then increased until the numerical values
converged and the contribution of the integral along x| = 4k was zero to three decimal places. To satisty
these requirements for the numerical results given in Figs. 7 and 8 it was sufficient to take S| = 40, S, = 200,
S; =44, S, =40 and k =5.5.

Table 5

14 (0,0) — u4(x},0) for a homogeneous half-space
(x1,0) BEM Analytical
0, 0.0000 0.0000

0)

0) 0.0355 0.0351
,0) 0.0507 0.0506
0) 0.0596 0.0594
0) 0.0660 0.0656
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Fig. 8. Surface displacement for the layer of width 4 = 5.

6. Summary

Some BEMs for the solution of certain classes of boundary value problems of elasticity for anisotropic
inhomogeneous media have been derived. The methods are generally easy to implement to obtain numerical
values for particular problems. They can be applied to a wide class of important practical problems for
inhomogeneous anisotropic materials. The numerical results obtained using the methods to solve some
sample problems indicate that they can provide accurate numerical solutions.
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